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Based on the numerical method for isolating the real root of semi-algebraic system and the Lya-
punov’s first method with the technique of linearization, an algorithm is presented to determine the
stable positive equilibrium of high dimensional predator prey system.
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1. INTRODUCTION
Solving polynomial system has been one of the central
topics in computer algebra. It is required and used in
many scientific and engineering applications. There are
two basic skills for solving such polynomial system: sym-
bolically and numerically. For symbolic method, there
exits several methods, such as resultants,1 Groebner bases2

method introduced by Buchberger, and triangular sets.3

Numerical calculation methods include Homotopy contin-
uation Method,4�5 Newton’s iteration algorithm and inter-
val bisection algorithm.
For many practical problems, in deed, we mainly care

about the real roots of a polynomial system. For example,
in this paper, we only consider the positive real equilib-
rium of the differential system. Based on the triangular
set technique, Xia et al.6 proposed an algorithm use Wu’s
method for isolating the real roots of a semi-algebraic sys-
tem with integer coefficients, and made it more practical
with interval algorithm in their later work.7 Actually, these
methods compute the exact results because they depend on
symbolic computations, but they are restricted to small size
systems because of the high complexity of the symbolic
computation. In order to avoid this problem, Shen et al.8

presented a numerical algorithm improving the efficiency
based on homotopy continuation method combined with
interval Newton iteration technique. Based on the algo-
rithm, we proposed a numerical algorithm to computing
the real roots of a semi-algebraic system in Ref. [9].

∗Author to whom correspondence should be addressed.

In many engineering applications, we need to create
the corresponding mathematical model, and analysis its
stability10–12 using numerical method, or computing the
value of parameter in the mathematical model.13

In most researches on biological system, analysis sta-
bility of equilibrium of a differential system is one of the
central topic. Recently, Wang and Xia14 propose a new
and general approach for analyzing the stability of a large
class of biological networks using real solving and solution
classification. Luo and Lu15 study the stability analysis for
Lotka–Volterra systems. However, these algorithms only
handle the system with low dimension because of the high
complexity of the symbolic computation
For higher dimensional systems (dimension is not less

than 5), we always qualitatively study the existence,
uniqueness and stability of the positive equilibrium or peri-
odic solutions of the system,16–20 because solving the real
solution of the system is very difficult and nearly impossi-
ble. As we all know, the qualitative analysis to the contin-
uous coefficient system is applicable, but we always want
to obtain the concrete information of the constant coef-
ficient system. Fortunately, the method presented in this
paper can deal with this problem. And this method can
cope with systems with dimension more than 10.
The rest of this paper is organized as follows. Some

preliminary theories about the stability of differential equa-
tions are given in Section 2. In Section 3, we provide a
brief review on the numerical method for computing the
real roots of a semi-algebraic system, and given a algo-
rithm to compute the stable equilibrium. In Section 4, we
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will present the details of the stability analysis for two
high-dimensional predator prey systems.

2. STABILITY ANALYSIS OF
DIFFERENTIAL EQUATIONS

In this section, we review some basic theories about the
stability analysis of differential equations.
Consider the following differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =
f1�x�

g1�x�

ẋ2 =
f2�x�

g2�x�

���

ẋn =
fn�x�

gn�x�

(1)

where x= �x1� x2� � � � � xn�, fi�x�� gi�x� are polynomials in
polynomial ring R�x�, and ẋi = dxi/dt for i = 1�2� � � � � n.
A point x̄ = �x̄1� x̄2� � � � � x̄n� in n-dimensional real

Euclidean space Rn is called an equilibrium of system (1)
if fi�x̄�= 0 and gi�x̄� �= 0 for i = 1�2� � � � � n.
In order to analyze the stability of an equilibrium, we

use the famous Lyapunov’s first method with the technique
of linearization, by considering the following Jacobian
matrix

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

��f1/g1�

�x1

��f1/g1�

�x2
� � �

��f1/g1�

�xn

��f2/g2�

�x1

��f2/g2�

�x2
� � �

��f2/g2�

�xn

���
��� � � �

���

��fn/gn�

�x1

��fn/gn�

�x2
� � �

��fn/gn�

�xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

Then the following theorem can be used to determine
the stability of the equilibrium x̄.

Theorem 1. If all the eigenvalues of the matrix J �x̄� have
negative real parts then x̄ is asymptotically stable. If J �x̄�
has at least one eigenvalues with positive real part, then
x̄ is unstable.

For a small system, it is easy to obtain the eigenvalues
of the matrix J �x̄�, then one can analysis the stability of
the x̄ using Theorem 1.
For a high-dimensional system, solving the characteris-

tic polynomial to get the exact zeros is a difficult problem.
In deed, to answer the question on stability of an equilib-
rium, we only need to know whether all the eigenvalues
have negative real parts or not. Therefore, the theorem of
Routh-Hurwitz serves to determine whether all the roots of
a polynomial have negative real parts.

Theorem 2 (Hirsch and Smale, (1974)). Routh-Hurwitz
theorem: A polynomial of degree n with real coefficient

f �x�= a0x
n+a1x

n−1+· · ·+an−1x+an� a0 > 0 (3)

is stable if and only if the following inequality holds:

T1 > 0� T2 > 0� � � � � Tn > 0 (4)

where

Tk

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 a0 0 0 0 0 ��� 0
a3 a2 a1 a0 0 0 ��� 0
a5 a4 a3 a2 a1 a0 ��� 0
a7 a6 a5 a4 a3 a2 ��� 0
���

���
���

���
���

���
� � �

���
a2k−1 a2k−2 a2k−3 a2k−4 a2k−5 a2k−6 ��� ak

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5)

In Eq. (5), if the index j > n, we let aj = 0.

3. ALGORITHM FOR COMPUTING THE
STABLE EQUILIBRIUM

In this section, we present very briefly the method we will
use for computing the stable equilibrium of the biological
system.
Consider the following semi-algebraic system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1 = 0� � � � � fn = 0

p1 > 0� � � � � pq > 0

n1 ≥ 0� � � � � ns ≥ 0

h1 �= 0� � � � � ht �= 0

(6)

where n≥ 1� q� s� t ≥ 0, We call it zero dimensional semi-
algebraic system if �f1� � � � � fn	 has only finite zeros in C.

Following the notations in software package Discover,6

we let f �n�p�h denote the polynomial equations, nonneg-
ative polynomial inequalities, positive polynomial inequal-
ities and polynomial inequations respectively.
Our main idea is to solve the real root intervals first,

and then delete some intervals which can not satisfy the
restriction system by substitution and the property of inter-
val expansion.
We first compute the solution of f using homotopy con-

tinuation method. At this step, we use the famous package
homo4ps222 to obtain all of the approximate solutions. By
using these isolated approximated solutions and the inter-
val Newton algorithm, we obtain the isolated real root
intervals of f . Now, we complete the first step to solving
the real root of system (16).
Suppose we have obtained n isolated real root intervals,

denoted by X = �X1�X2� � � � �Xn�. In order to check wether
each Xi fulfill those restrictions in p, we substitute interval
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Xi into p, and suppose that p�Xi�= �I1� I2� � � � � Ip�, where
Ii means the interval extension of pi at interval Xi. If there
exists at least one Ij such that the right endpoint of Ij is
smaller than 0, then we know that pj�x̄� < 0, where x̄ is
the accurate real solution of f which contained in Xi. From
this, one can delete Xi from X. If all of the left endpoints
of Ii� �i= 1�2� � � � � p� is bigger than 0, we have pi�x̄� > 0
for all i ∈ �1�2� � � � � p	. At this case, the interval Xi must
be retain. The most difficult case in this step is 0 ∈ Ii for
some i ∈ �1�2� � � � � p	, because we do not know the exact
sign of pi at x̄, so we can not decide whether delete Xi

or retain it directly. The following theorem can help us to
solve this problem.

Theorem 3 (Zhenyi Ji et al.) If the intersection of Xi

and 
�Zi� is an empty set for all i ∈ �1�2� � � � �m	, then
pi�x̄�≥ 0.

where �Z1�Z2� � � � �Zm	 be the isolated real root inter-
vals of the following system

f̃ = �f1� f2� � � � � fn� a
2pi+1� (7)

and a in system (7) is a new variable. The projection 

defined as follows:


 � I�Rn+1�→ I�Rn� (8)

which remove the last coordinate of an interval vector in
I�Rn+1�.
Similar to theorem 3, if we construct

f̃ = �f1� f2� � � � � fn� a
2pi−1� (9)

then we can decide whether pi�x̄�≤ 0 or not.
Combine system (7), (8) and Theorem 3, we can get the

exact sign of pi�x̄�.
Using the method described above, we can also delete

some intervals in X which don’t satisfy restrictions in n�h.
So far, we complete the algorithm to get the isolated

real root intervals of system (6), and named it realroot.
By combining algorithm realroot and theorem 1, we

propose an algorithm to obtain the stable equilibrium of
system (1).

4. STABILITY ANALYSIS OF HIGH
DIMENSIONAL PREDATOR PREY SYSTEM

In this section, we use our algorithm on two high dimen-
sional experiments. Consider the following n+ 1 dimen-
sion predator-prey system.
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1=x1

(
a1−b1x1−

cy

d+mx1

)
+

n∑
j=1

d1j �xj−x1��

ẋi=xi�ai−bixi�+
n∑

j=1

dij�xj−x1�� i=2�3�����n�

ẏ=y

(
−e+ fx1

d+mx1

)
�

(10)

Table I.

Algorithm 1: CSE

Input: A differential equation system in the form of (1)

1 Let polynomial system f = �f1� f2� � � � � fn�, and h = �g1� g2� � � � � gn�.
Constructing the semi-algebraic system defined in form (6) combine
f �h and the background of the biological system.

2 Run algorithm realroot to obtain the isolated real root intervals of this
semi-algebraic system.

3 Let the midpoint of each interval as the approximate equilibrium, and
compute the Jacobian matrix of system in right of Eq. (1) at this point.

10 Output: The set of stable equilibrium or return empty set which
means that this system does’t have a stable equilibrium.

where xi�i ∈ I = �1�2� � � � � n	� denote the population den-
sity of the prey species in the ith patch, y represents the
population density of the predator species, ai� bi, the intrin-
sic growth rate and density-dependent coefficient of the
prey n the ith patch, respectively. c is the capturing rate
of the predator, e the death rate of the predator, f the
rate of the conversion of nutrients into the reproduction of
the predator and dij�i� j ∈ I� i �= j� he dispersal rate of he
prey species from the ith patch to the jth patch. d and
d are two nonnegative constants, the term x1/�d+mx1�
denotes the functional response f the predator. In this sys-
tem, we always assume that the coefficients bi� dij �i� j ∈
I� i �= j�� c� e, and f are positive and di�i for all i ∈ I .
In the following example, we let n= 9.

Example 1. In this example, we give the value of each
parameter in system (10) as follows:

c = 4�47� d = 1�43� m= 1�54� f = 0�76

a = �3�12�−0�43�1�83�2�79�1�45�0�95�2�34�0�45�0�34�

b= �2�43�0�72�1�87�2�35�0�64�1�73�1�47�1�36�1�62�

and

D

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1�32 0�79 0�45 0�34 1�23 1�11 1�36 0�74
2�98 0 3�12 3�25 1�67 1�98 2�61 3�12 1�79
3�1 1�34 0 1�45 1�94 1�04 2�73 1�39 4�14
2�13 1�74 1�23 0 1�46 2�19 2�32 1�82 1�27
1�24 1�76 2�76 2�45 0 2�67 2�42 2�53 1�37
3�1 1�34 1�04 1�45 1�94 0 2�73 3�13 3�84
3�2 1�73 1�73 2�16 1�47 1�94 0 2�43 3�27
3�14 1�65 2 3�36 3�27 2�64 2�98 0 3�64
1�32 1�73 1�64 3�3 3�45 2�97 2�74 2�1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Dij means the value of dij in system (10), and a =
�a1� a2� � � � � a9� b= �b1� b2� � � � � b9��
First, we change this system to a polynomial system f

through equating the numerators of the rational functions
on the right hand of ẋ1 and ẏ, then h= �d+mx1�.

In view of the definition of the system, we have n= ���
and p = �x1� x2� � � � � x9� y�.
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Indeed, polynomial system f has four real root. We
obtain the following four isolated real root intervals before
substitute these interval into constraints.

X1=

�0�810497781914894�0�810497782402504�
�0�804586919132605� 0�804586919605285�
�0�848395109825681� 0�848395110322056�
�0�879296392344588� 0�879296392853449�
�0�883548279519186� 0�883548280034860�
�0�816732188901196� 0�816732189381768�
�0�881105623407286� 0�881105623920952�
�0�820852875050071� 0�820852875531826�
�0�809387608678938� 0�809387609153951�
�0�820326466987962� 0�820326473136347��

X2=

�−1�000000000000000�1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�
�−1�000000000000000� 1�000000000000000�

X3=

�1�075972957834162�1�075972959460317�
�0�972173322154557� 0�972173323254987�
�1�016351106633443� 1�016351107746212�
�1�042469515727628� 1�042469516821479�
�1�059470463111973� 1�059470464274978�
�0�980875353753226� 0�980875354839560�
�1�058542611101414� 1�058542612270612�
�0�987468461441554� 0�987468462540937�
�0�964765762461909� 0�964765763500400�
�−0�000000000753366� 0�000000000753366�

X4=

�0�810497782139752�0�810497782177646�
�−1�086117396750171� −1�086117396597172�
�−1�277719467538150� −1�277719467314553�
�−1�917258329539363� −1�917258329253069�
�−1�360235897918054� −1�360235897735432�
�−1�169995339202457� −1�169995339019288�
�−1�267061553518377� −1�267061553329044�
�−1�183977886696930� −1�183977886523332�
�−1�404074548275796� −1�404074548072315�
�−10�555921198085869� −10�555921193470624�

We delete X2�X3�X4 using algorithm realroot. This
shows that there are four equilibrium of the system, only
one of them is positive. Let the midpoint of X1 be the
approximate equilibrium, and compute the eigenvalues of
the Jacobian matrix at this point, we obtain the following
ten eigenvalues,

�−1�26707938086� − �0436116879983� −11�0076355860�
−17�579017256� −25�4088078712� −21�832928144�
−23�805150198− �441343035292i� −20�2687098484
+ �410637687497i� −20�26870985− �41063768749i�
−23�80515019+ �44134303529i�

Then we know that this point is a stable equilibrium based
on Theorem 2, which guarantees the predator-prey system

described by Eq. (10) is permanent and has only one pos-
itive stable state.

Example 2. In this example, we let n= 10, and the values
of parameter are mentioned as:

c=4�76� d=2�53� m=1�73� f =2�43�

a= �0�32�2�43�0�54�3�21�3�23�1�95�2�34�0�45�0�34�0�74�

b= �3�34�1�32�2�68�2�53�1�34�2�37�1�47�1�36�1�62�1�17�

D

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1�24 1�76 0�45 2�69 0�96 1�37 0�24 1�54 2�65
1�23 0 1�23 2�53 2�64 0�87 1�64 2�34 3�56 4�23
1�23 4�35 0 3�64 2�15 2�56 3�54 4�52 1�34 3�52
3�15 2�53 3�46 0 2�46 1�47 2�46 1�26 2�16 3�14
3�21 2�45 4�32 3�45 0 3�74 1�34 4�56 3�24 2�45
2�38 2�86 3�45 3�46 4�65 0 2�34 2�17 2�79 3�65
3�2 1�73 1�73 2�16 1�47 1�94 0 2�43 3�27 3�46
3�14 1�65 2 3�36 3�27 2�64 2�98 0 3�64 4�53
1�32 1�73 1�64 3�3 3�45 2�97 2�74 2�1 0 3�54
0�34 0�27 1�23 2�63 1�94 1�79 1�63 1�32 1�24 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Like Example 1, the system also have four real roots,
and we delete three of them through the constraints. Using
theorem 2, we prove that the point

�0�64521677243342646� 0�45062858327973992�
0�79108902305373541� 0�72702509245488045�
0�78874125346439294� 0�79943477664536378�
0�76117242763987458� 0�78554440360188804�
0�73896454660658983� 0�73664609495876254�
0�75661214439091529�

is the only one stable equilibrium of the differential sys-
tem.

5. CONCLUSIONS
For a high dimensional predator prey system, based on
the numerical method for isolation the real roots of
semi-algebraic system, we compute the equilibrium first,
and determine its stability based on the Lyapunov’s first
method. Using our method, for two predator prey systems
with dimension ten and eleven respectively, all of the equi-
librium are found, and we confirm that there are only one
positive stable equilibrium.
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