
ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2015, Vol. 36, No. 4, pp. 389–398. c© Pleiades Publishing, Ltd., 2015.

Downward Density of Exact Degrees

J. Liu1*, G. Wu2**, and M. Yamaleev3***

(Submitted by S Barry Cooper)
1CIGIT, Chinese Academy of Sciences, Chongqing 401122, China

2SPMS, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
3IMM, Kazan Federal University, Kremlyeskaya ul. 18, Kazan, 420008 Russia

Received January 12, 2015

Abstract—In this paper we study exact d.c.e. degrees, the class of d.c.e. degrees which is strictly
between the class of degrees of tops of bubbles and the class of isolated d.c.e. degrees. We show that
exact degrees are downward dense similar to isolated d.c.e. degrees.

DOI: 10.1134/S1995080215040095

Keywords and phrases: Erhsov’s hierarchy, d.c.e. sets, Lachlans’ sets, exact degrees.

1. INTRODUCTION

The differences of computably enumerable (further, d.c.e.) sets gives a natural generalization of
computably enumerable (further, c.e.) sets, which are one of the central objects in Computability Theory.
The structures of Turing degrees of c.e. and d.c.e. sets are studied during last several decades and
nowadays we know a lot of particular properties of these structures, but there are still several basic
open problems related to their model-theoretical properties.

Arslanov, Kalimullin and Lempp [1] showed that there exists a bubble pair in the class of d.c.e.
Turing degrees. Using this notion and its generalization they refuted the Downey’s Conjecture showing
that partial orders of d.c.e. and 3-c.e. Turing degrees are not elementarily equivalent. Recall that d.c.e.
degrees 0 < b < a form a bubble pair (or also bubble) if all d.c.e. degrees below a are comparable with b,
also we say that b is the middle of bubble and a is the top of bubble. It’s easy to see that a is always d.c.e.
and it was proved in [1] that b must be c.e. This bubble pair phenomena is an essence of properly d.c.e.
degrees and has many nontrivial properties. For example, it’s easy to see that a is an exact d.c.e. degree
(see [5]), in particular it’s an isolated degree (see, e.g. [2]), also it’s easy to see that a is not splittable
avoiding the upper cone of b (see [3]).

The construction of a bubble is a highly nontrivial task and it’s interesting whether it can be combined
with other properties, like upward or downward density in the c.e. degrees. The positive answer for
density question in the c.e. degrees allows to distinguish c.e. degrees in the class of d.c.e. degrees.
Indeed, if between any two c.e. degrees e < c there is a bubble then the middle of the bubble is also
between them. Hence, for any c.e. degree c it has a nontrivial c.e. splitting c0 ∪ c1 = c and there are
middles of bubbles in the intervals [c0, c] and [c1, c]. On the other hand, if d is a properly d.c.e. degree
and if d0 ∪ d1 = d is a nontrivial splitting in the d.c.e degrees then either [d0,d] or [d1,d] doesn’t
contain a c.e. degree. Therefore, it doesn’t contain middle of bubble, contrary to the c.e. case above.

However, the interaction of the original bubble construction and permitting argument provides many
difficulties. Hence, even downward density for bubbles is under question. Our approach is to consider
different properties of bubbles separately. Namely, the exact degrees, introduced by Ishmukhametov [5],
form the class of d.c.e. degrees which extend the class of tops of bubbles. So, the question on density,

*E-mail: liujiang@cigit.ac.cn
**E-mail: guohua@ntu.edu.sg

***E-mail: mars.yamaleev@kpfu.ru

389

390 LIU et al.

particularly downward and upward density, can be naturally asked for this class. Also the density
questions are well studied for the class of isolated d.c.e. degrees which extend the class of exact degrees.
However, the nature of constructions of isolated degrees and exact degrees doesn’t allow to transfer
the results from isolated degrees into exacts degrees. Using some modifications we show in the main
theorem that exact d.c.e. degrees are downward dense. We left open the following questions.

Question 1.1. Are bubble pairs downward dense?
Question 1.2. Are exact degrees upward dense?
For a d.c.e. set D and its enumeration {Ds}s∈ω such that |Ds − Ds−1| ≤ 1, we define partial

computable (further, p.c.) function sD(x) such that sD(x) ↓= s if and only if x is enumerated into D

at stage s. If later x is extracted from D then sD(x) is enumerated into its Lachlan’s set L(D) =
{s| ∃x sD(x) ↓= s & x �∈ D}. Let d = deg(D), then L[d] = {deg(L(B))| B ∈ d and B is d.c.e.},
elements of L[d] we call Lachlan’s degrees of d. In [5], Ishmukhametov defined R[d] as the set of all
degrees below d, in which d is relatively computable enumerable. It’s easy to show that R[d] = L[d]
(see, e.g. [4]). Following [5], a noncomputable d.c.e degree d is exact if |L[d]| = 1. Now we proceed to
the proof of the main result. Our notation and terminology generally follow Soare [6], for some special
definitions we refer to [4, 5].

2. THEOREM AND STRATEGIES

Theorem 1. Below any noncomputable c.e. degree a there exists an exact d.c.e. degree d.

2.1. Requirements

Given a c.e. set A ∈ a with a computable enumeration {As}s∈ω, we construct a noncomputable d.c.e.
set D such that D ≤T A and L(B) ≡T L(D) for any d.c.e. set B ≡T D. So it suffices to build a d.c.e.
set D and functionals Δe and Γe satisfying the following requirements:

G: D ≤T A,

Re: D = ΦBe
e & Be = ΨD

e ⇒ ∃ Δe(L(D) = ΔL(Be)
e),

Se: We = ΘD
e ⇒ ∃ Γe(We = ΓL(D)

e),
Pe: L(D) �= Ωe,

where {〈We, Be,Φe,Ψe,Ωe〉}e∈ω is an effective enumeration of all corresponding 5-tuples of c.e. and
d.c.e. sets and p.c. functionals. Note that the S-requirements indicate that L(D) has the greatest c.e.
degree below d, so it isolates D. On the other hand, the R-requirements indicate that L(D) has the
least c.e. degree among all Lachlan degrees of d.c.e. sets from the degree deg(D). At the same time,
P-requirements ensure that deg(L(D)) is not computable, hence deg(D) is an exact d.c.e. degree.

2.2. Strategies

Basic P-strategy. The basic idea of a P-strategy, say π, is the following. First of all, π respects the
global requirement D ≤T A and uses direct permitting argument. That is, whenever π puts or extracts
a number from D there is the corresponding A-change. So, π picks step by step an increasing sequence
of numbers x0 < x1 < · · · < xn < . . . and waits for an A-permission in order to put one of them into
D. If it never gets an A-permission, then A is computable, which contradicts with the assumption
of the theorem. Suppose π enumerates some x into D at stage s. To make L(D) �= Ωe, π chooses
such s and waits for Ωe(s) ↓= 0. If Ωe(s) ↓= 0, then π may extract x from D (and force s entering
L(D)) making L(D)(s) = 1 �= 0 = Ωe(s). However, π’s extraction of x also need an A-permission. So,
π starts waiting for permission for extraction of x and simultaneously organize another infinite sequence
x′

0 < x′
1 < · · · < x′

n < . . . in order to get a new witness s′ > s as an entry stage of some x′ > x from
this sequence. By this argument we can get an infinite sequence of witnesses and the corresponding
numbers prepared for extraction and waiting for A-permission. Again, one of these numbers will get
an A-permission since A is not computable. Note that an enumeration process doesn’t depend on π’s
Ω-functional, but an extraction process does.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

DOWNWARD DENSITY OF EXACT DEGREES 391

Basic S-strategy. An S-strategy, say σ, tests the length agreement of its We = ΘD
e , and if the length

agreement is larger than the ones before then σ defines ΓL(D)
e as current We up to the length agreement.

The problem is that for some argument m, ΓL(D)
e (m) is first defined as We(m) = 0 at stage s, later a

small number is enumerated into or extracted from D making ΦD
e (m)[t] = 1 at a bigger stage t > s,

which allows We(m) to change.
To solve this problem, we use the following strategy. If the We(m)-change is derived from an

enumeration into D, then σ will extract this number from D to make a disagreement ΘD
e (m) = 0 �= 1 =

We(m). Otherwise, We(m)-change is caused by an extraction from D and the corresponding number,

say s, is enumerated into L(D). In this case the L(D)-change allows to correct ΓL(D)
e (m).

Particularly, such We(m)-change comes from a P-strategy enumerating a number into D. Formally,
we illustrate the process by considering an S-strategy σ with a lower priority P-strategy π ⊃ σ�∞.

First, we define the length agreement functions:

• l(σ, s) = max{y < s : ∀x < y (We(x)[s] = ΘD
e (x) ↓ [s])},

• m(σ, s) = max{0, l(σ, t) : t < s and t is σ-stage}.

We say that s is a σ-expansionary stage if s = 0 or l(σ, s) > m(σ, s). Proceed to an example of
simultaneous work of σ and π.

(σ1) The P-strategy π chooses a fresh number x at stage s0.

(σ2) The P-strategy π waits for a π-stage s1 > s0, which is also a σ-expansionary stage, such that
l(σ, s1) > x, then puts x into D. From now on, restrain D � s1 except for removing x.

(σ3) Wait for a σ-expansionary stage s2 > s1 such that l(σ, s2) > x. First, σ checks whether
We,s1 � l(σ, s1) changed.

(σ3.1) If there is a We,s1 � l(σ, s1)-change at a number m < l(σ, s1), then it must be We,s2(m) = 1.
Now σ extracts x to restore the computation ΘD

e (m) to ΘD
e (m)[s1] = 0 and we restrain D � s2,

this allows the desired disagreement ΘD
e (m) = 0 �= 1 = We(m).

(σ3.2) Otherwise, no We,s1 � l(σ, s1)-change appears between stages s1 and s2. Then σ takes no action
on x, and π waits for Ωπ(s1) ↓= 0.

(σ3.2A) If Ωπ(s1) ↓= 0 never happens, then π never extracts x from D. So, σ is safe from π.

(σ3.2B) If Ωπ(s1) ↓= 0 happens and π does extract x from D at some stage s3 ≥ s2, then the correspond-
ing s1 is enumerated into L(D) immediately. Now, the extraction of x may allow a We-change,

say at m. However, this m must be greater than s2 and s1. So ΓL(D)
e (m) is defined after stage

s2 (so it has a bigger use > s1). Hence, the enumeration of s1 into L(D) allows to automatically

correct ΓL(D)
e (m).

Remark. Note that a number (which is enumerated into D by π) extraction from D could be
performed by some other S- or R-strategy between π and σ. This can happen only when case (σ3.1)

is false at a bigger stage s > s2. Then it is similar to case (σ3.2B) where any incorrect ΓL(D)
e (m) is due

to an extraction of some x which was enumerated before the stage s2.
Basic R-strategy. The basic idea of an R-strategy is similar to the one of an S-strategy. Roughly,

an R-strategy ρ would define ΔL(Be)
e computing L(D) or produce a disagreement between Be and ΨD

e
by extracting numbers from D. However, the situation here is more complicated since L(Be) is given
and not controlled by us directly. Specifically, after L(D)(s)-change, ρ can either force a corresponding
L(Be) � δe(s)-change or make a successful diagonalization between Be and ΨD

e . To demonstrate the
idea, we consider a process as follows.

First of all, we define the length functions at stage s by

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

392 LIU et al.

• l(ρ, s) = max{y < s : ∀x < y(ΦBe
e (x)[s] ↓= Ds(x) & ∀u < ϕe(x, s)(ΨD

e (u)[s] ↓= Be,s(u)))},

• u(ρ, s) = max{ϕe(x, s)|x < l(ρ, s)},

• m(ρ, s) = max{0, l(ρ, t) : t < s and t is an ρ-stage}.

We say that s is an ρ-expansionary stage if s = 0 or l(ρ, s) > m(ρ, s). By s− we denote the previous
expansionary stage before s (we will use it in the construction). Clearly, at each ρ-expansionary stage,
z < u(ρ, s) implies ΨD

e (z)[s] ↓= Be,s(z). Note that only P-strategy can enumerate numbers into D. So
we present an R-strategy ρ with a lower priority P-strategy π ⊃ ρ�∞.

(ρ1) The P-strategy π chooses a fresh number x at stage s0.

(ρ2) The P-strategy π waits for a π-stage s1 > s0, which is also a ρ-expansionary stage, such that
l(ρ, s1) > x, then puts x into D. From now on, restrain D � s1 except for removing x.

(ρ3) Wait for the ρ-expansionary stage s2 > s1. Then ΦBe
e (x) changed its value between stages s1 and

s2 since 0 = ΦBe
e (x)[s1] �= ΦBe

e (x)[s2] = D(x)[s2] = 1. Thus, there must be some y < ϕe(x, s1)
which entered or exited Be between these stages.

(ρ3.1) If y ∈ Be,s1 but y �∈ Be,s2, then ρ extracts x from D to restore the computation ΨD
e (y) = 1 =

ΨD
e (y)[s1], from now on, restrain D � s2. Hence we have the disagreement ΨD

e (y) = 1 �= 0 =
Be(y) since B is a d.c.e. set.

(ρ3.2) Otherwise, y �∈ Be,s1 but y ∈ Be,s2 , then ρ takes no action on x. However, π may extract x from
D afterward.

(ρ3.2A) If π never extracts x from D, then it does not put any number into L(D). So ρ is safe from π.

(ρ3.2B) If π extracts x from D at some stage s3 ≥ s2, then s1 is enumerated into L(D). Hence, ρ must

be able to correct ΔL(Be)
e (s1) at the next ρ-expansionary stage. In this case, y should leave Be

(otherwise, we get a diagonalization), hence some number s1 < s ≤ s2 should enter L(Be) and

we use it for the correction. Note that ρ delays the first definition of ΔL(Be)
e (s1) and define it only

at the next ρ-expansionary stage s2.

Remark. Note that a number (that enumerated into D by π) can be extracted by some other S or
R-strategy between π and ρ. This can happen only if case (ρ3.1) is false at a bigger stage s > s2. Then
we correct the value at point s1 similar to (ρ3.2B).

Interactions Among Strategies. In the previous S- and R-strategies, we omitted the G-
requirement when D changed. However, similar to P-strategy, we need an A-permission whenever S-
and R-strategies make any change on D. Basic idea is to code the latent disagreement actions at steps

(σ3.1) and (ρ3.1) as cycles. So each cycle constructs the corresponding functional ΓL(D)
σ,k or ΔL(Be)

ρ,k

associated with numbers xk for k = 0, 1, 2, At the same time, we compute A(k) using computable
functions fσ(k) and fρ(k), respectively. As A is noncomputable, the strategies σ and ρ eventually make
successful disagreements.

As we make use of direct permitting argument, it allows consecutive D-changes without any
expansionary stages. By the proceeding discussion, if that is only consecutive extraction from D then
the S- and R-strategies take effect. It is also easy to see that pure consecutive enumeration into D has
no essential injury to the S- and R-strategies. In this case, they pick out the least enumeration that
causes We-change or Be-change to process their basic strategies.

If the consecutive D-changes contains both enumeration and extraction, then it can threaten to
the basic S- and R-strategies that restrain D at non-expansionary stages. Without loss of generality,
we consider the following case with two P-strategies π1 and π2 below an R-strategy ρ such that
ρ�∞ ⊂ π1 ⊂ π2.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

DOWNWARD DENSITY OF EXACT DEGREES 393

(1) Suppose s0 is a ρ-expansionary stage, x was chosen by π1 and z by π2 at some stages before
< s0.

(2) The P-strategy π2 gets A-permitting and extracts z at stage s1 > s0. Accordingly it enumerates
the corresponding number sD(z) < s into L(D).

(3) At a bigger stage s2 > s1, the P-strategy π1 gets A-permitting and puts x into D. Furthermore,
there is no any ρ-expansionary stage between s1 and s2. Hence ρ still needs its restraint for z, but
enumerating x into D we injury it (on the other hand, we cannot delay the enumeration of x due
to the direct permitting method).

(4) At the next ρ-expansionary stage s3 > s2 the strategy ρ should correct ΔL(Be)
ρ,k (sD(z)), which

was defined at some stage s < s1. Now ΦBe
e (z)[s3] = 0 �= 1 = ΦBe

e (z)[s0], and so Be � ϕ(z, s0)-
changes. The basic R-strategy wants this change at some y that entered Be before stage s. So y
should leave Be like in the case (ρ3.2B). However, as π1 put x into D at s2 < s3, the corresponding
Be � ϕ(z, s0)-change could be some m < ϕ(z, s0) entering Be at some stage t ∈ (s2, s3). As a

consequence, ρ cannot correct ΔL(Be)
ρ,k (sD(z))[s].

To solve above problem, it is adequate to avoid the enumeration like π1 performed at stage s2. The
basic idea is to divide the enumeration and extraction of P-strategy into two classes. Accordingly, we
arrange 2-dimensional cycle outcomes, say (i, j), with lexicographic order priority for each P-strategy.

Hence the basic P-strategy is modified as follows. It has numbers for an enumeration x+
ij (we call

them attackers) and numbers for an extraction x−
ij (we call them diagonalizational witnesses). A

cycle (i, j) can have only one of them, moreover a diagonalizational witnesses can be produced only
from attackers. Generally, suppose π currently works at cycle (i, j) at stage s0.

(π1) First, π checks if it has a witness for enumeration into D. If no, then it chooses a fresh number,
say x+

ij and waits for A(j)-change, so initializes all lower priority strategies and defines f i
π(j) =

A(j)[s0]. Then π starts a new cycle (i, j + 1).

(π2) If A(j)-change appears at stage s1 > s0, then π puts x+
ij into D. Also π initializes all lower priority

strategies, starts waiting for Ωπ(sD(xij)) ↓= 0.

(π3) If Ωπ(sD(xij)) ↓ [s2] = 0 for some s2 > s1, then let x−
ij = x+

ij be a witness for extracting from
D. So, π starts waiting for A(i)-change, initializes all lower priority strategies and defines
fπ(i) = A(i)[s0]. Now π starts a new cycle (i + 1, 0).

By this modification, if π1 enumerates a number then it initialize all lower priority strategies. This
means that π1 can only extract numbers from D whenever π2 is alive simultaneously. The same as for π2

can be said about S- and R-strategies. So the case (3) never happens now.

3. OUTCOMES AND PRIORITY TREE

Outcomes. R- and S-strategies consist of cycles k and have outcomes (k,∞) and (k, fin), where
k ∈ ω correspond to these cycles. For the sake of unifying we will use (k, 0) and (k, 1) instead of
(k,∞) and (k, fin), respectively. An additional outcome d denotes a diagonalization. The ordering is the

following: d < (0, 0) < (0, 1) < (1, 0) < (1, 1) < An outcome (k, 0) means that we extend ΔL(Bρ)
ρ,k or

ΓL(D)
σ,k , where ρ is the corresponding R-strategy and σ is the corresponding S-strategy. Since A is not

computable we will show that each such strategy has the greatest opened cycle k.
P-strategies consist of 2-dimensional cycles (i, j) and have outcomes (i, j), where i, j ∈ ω. An addi-

tional outcome d denotes a diagonalization. The ordering is the following: d < (0, 0) < (0, 1) < (0, 2) <

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

394 LIU et al.

... < (1, 0) < (1, 1) < (1, 2) < ... < (2, 0) < (2, 1) < (2, 2).... The priority between cycles corresponds
to this ordering. As in above case we argue that each P-strategy has the greatest opened cycle (i, j).

Each strategy ξ has a parameter w−(ξ, k, j), denoting whether outer cycle k of (k, j) is waiting for
permitting (for R- or S-strategies we assume that j = 0 or j = 1, respectively). By default it equals to
0, and when outer cycle k of (k, j) of the strategy ξ is waiting for A-permitting (namely, for k entering
A) we define it as 1. When outer cycle k gets the permitting we reset w−(ξ, k, j) as 0 again. For a P-
strategy ξ we also have parameter w+(ξ, i, k). The idea is the same and we define w+(ξ, i, k) as 1, when
inner cycle k of (i, k) is waiting for A-permitting (namely, for k entering A).

The priority tree. Let Λ = {d, (i, j)}i,j∈ω be the set of outcomes with the ordering described above.
The tree of strategy T is a subtree of Λ<ω . At levels 3m we put R-strategies, at levels 3m + 1 we put
S-strategies, and at levels 3m + 2 we put P-strategies. Whenever we put a strategy on a tree we allow
only outcomes corresponding to it.

We use standard definitions and notations for priority constructions involving tree of strategies. Also

by ΦXξ

ξ we denote ΦXe
e , where e corresponds to the node ξ. For the sake of convenience we use Greek

letters ρ for R-strategies, σ for S-strategies, and π for P-strategies. We will omit indices when they are
clear from the context. Initializing a strategy we cancel all its witnesses, functionals, close all its cycles,
etc. When we initialize a strategy which was declared as satisfied we cancel this declaration.

4. CONSTRUCTION

Stage s = 0. D = ∅, all the strategies on T are initialized.
Stage s + 1 > 0. In a usual manner, by induction we define a computable approximation TPs+1 of

the true path TP using substages t < s, where TPs+1,t is an approximation of TPs+1 at substage t.
Whenever TPs+1 is defined we initialize all nodes η � TPs+1 and proceed to the next stage.

Each stage consists of two phases: in Phase 1 we check whether some node got a permitting, if the
answer is affirmative then we go to this node immediately and work with it; in Phase 2 we work in a usual
way. If we succeed in Phase 1 then we skip Phase 2.

Phase 1. Let k be the least element enumerated into A at stage s + 1 (w.l.o.g, we assume that
only one element is enumerated into A at each stage). Check whether there exists a node ξ such that
w−(ξ, k, j)[s] = 1 or w+(ξ, i, k)[s] = 1 for some j and i, correspondingly. If there is no such node then
proceed to Phase 2. Otherwise, let ξ be the least such node.

• If w−(ξ, k, j)[s] = 1 then ξ performs a diagonalization through cycle k by extracting x−
kj from D,

define TPs+1 = ξ, define w−(ξ, p, q)[s + 1] = 0 for all p, q ∈ ω, and declare that ξ is satisfied.

• If w−(ξ, k, j)[s] = 0 but w+(ξ, i, k)[s] = 1 then enumerate the attacker x+
ik into D finishing attack

of the cycle (i, k), close cycles (i, q) for all q > k, open cycle (i + 1, 0), define x−
ik = x+

ik as a
diagonalization witness of outer cycle i, define TPs+1 = ξ, and define w+(ξ, i, q)[s + 1] = 0 for
all q ∈ ω.

Phase 2. At substage 0 < t + 1 < s + 1 we define Ts+1,t+1 or Ts+1 according to the following cases
(for simplicity we define TPs+1,0 = �):

Case t = 3m, Ts+1,t = ρ, an R-strategy.

If ρ is satisfied then define Ts+1,t+1 = ρ�d and proceed to the next substage t + 2. Otherwise, let k
be the greatest opened cycle for ρ (if there is no such cycle then open cycle k = 0 and proceed as below).
Cycle k works as follows.

ρ1. If the stage s + 1 is not ρ-expansionary, then define Ts+1,t+1 = ρ�(k, fin) and proceed to the next
substage t + 2.

ρ2. Otherwise (ρ1 fails), let s− be the previous ρ-expansionary stage.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

DOWNWARD DENSITY OF EXACT DEGREES 395

ρ2.1. If there is some x (the least and unique) and y such that (1) x < l(ρ, s−), (2) y < ϕρ(x)[s−], (3)
y ∈ Bρ[s−]−Bρ[s], (4) x was enumerated after s− and no numbers less than x was extracted from
D after s−, then define w−(ρ, k, 0)[s + 1] = 1 (so, x starts waiting for an A(k)-change), define the
corresponding number x−

k0 = x as a diagonalization witness associated with k. Also open the next
cycle k + 1, define TPs+1 = ρ and proceed to the next stage s + 2.

ρ2.2. Otherwise (ρ1 fails, ρ2.1 fails), (re-)define ΔL(Bρ)
ρ,k (z) = L(D)(z) with

δρ,k(z)[s + 1] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s + 1, if z = sD(v) ↓ for some v and δρ,k(z)[s−] ↑,

δρ,k(z)[s−], if z = sD(v) ↓ for some v and δρ,k(z)[s−] ↓,

0, otherwise

where z < s + 1, also define TPs+1,t+1 = ρ�(k,∞), and proceed to the next substage t + 2.

Case n = 3m + 1, TPs+1,t = σ, an S-strategy.

If σ is satisfied then define Ts+1,t+1 = σ�d and proceed to the next substage t + 2. Otherwise, let k
be the greatest opened cycle for σ (if there is no such cycle then open cycle k = 0 and proceed as below).
Cycle k works as follows.

σ1. If the stage s + 1 is not σ-expansionary then define Ts+1,t+1 = σ�(k, fin) and proceed to the next
substage t + 2.

σ2. Otherwise (σ1 fails), let s− be the previous σ-expansionary stage.

σ2.1. If there is some x (the least and unique) and y such that (1) y < l(σ, s−), (2) x < θσ(y)[s−],
(3) y ∈ Wσ[s + 1] − Wσ[s−], (4) x was enumerated after s− and no numbers less than x was
extracted from D after s−, then define w−(σ, k, 0)[s + 1] = 1 (so, x starts waiting for an A(k)-
change), define the corresponding number x−

k0 = x as a diagonalization witness associated with
cycle k. Also open the next cycle k + 1, define TPs+1 = σ and proceed to the next stage s + 2.

σ2.2. Otherwise (σ1 and σ2.1 fail), (re-)define ΓL(D)
σ,k (z) = W (z) with γσ,k(z) = s + 1 for all

z < l(σ, s + 1), define TPs+1,t+1 = σ�(k,∞) and proceed to the next substage t + 2.

Case t = 3m + 2, Ts+1,t = π, a P-strategy.

If π is satisfied then define Ts+1,t+1 = ρ�d and proceed to the next substage t + 2. Otherwise, assume
that (k, j) is the greatest opened cycle (if there is no an opened cycle then open cycle (k, j) = (0, 0) and
proceed as below). Recall that x+

kj is the attacker for enumeration into D and x−
kj is the diagonalization

witness for extraction from D. Cycle (k, j) works as follows.

π1. If there is no attacker x+
kj then choose x+

kj as a “big” number, define TPs+1 = π, and proceed to
the next stage s + 2.

π2. Otherwise (π1 fails), if there is an R-strategy ρ�(i,∞) ⊂ π for some i such that x+
kj > l(ρ, s + 1)

then define TPs+1 = π and proceed to the next stage s + 2.

π3. Otherwise (π1 − π2 fail), if x+
kj �∈ D[s + 1] and sD(x+

kj) ↑ then define w+(π, k, j)[s + 1] = 1 (so,
inner cycle j starts waiting for A(j)-change), open cycle (k, j + 1), define TPs+1 = π, and
proceed to the next stage s + 2.

π4. Otherwise (π1 − π3 fail), if sD(x+
kj) ↓ and Ω(sD(x+

kj))[s + 1] �= 0 then define TPs+1,t+1 =
π�(k, j), and proceed to the next substage t + 2.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

396 LIU et al.

π5. Otherwise (π1 − π4 fail), if sD(x+
kj) ↓ and Ω(sD(x+

kj)) ↓ [s + 1] = 0 then define x−
kj = x+

kj and
w−(π, k, j)[s + 1] = 1 (so, outer cycle k defines its witness and starts waiting for A(k)-change),
open cycle (k + 1, 0), define TPs+1 = π, and proceed to the next stage s + 2.

5. VERIFICATION

The true path is defined as TP = liminfsTPs. Below we prove by induction that TP is infinite and
exists, and that each requirement is satisfied by some strategy on TP .

Lemma 5.1. For any n ∈ ω the following holds:

(i) TP � n is initialized finitely often,

(ii) TP � n initializes other nodes finitely often,

(iii) there exists liminfsTPs � (n + 1).

Proof. We use an inductive argument to prove this lemma. If n = 0 then, clearly, TP � 0 = � exists,
is visited infinitely often and no other strategies initialize it. So, (i) holds. For n = 0, it is a case of
an R-strategy which can initialize other nodes only in Phase 1 or in case ρ2.1. of Phase 2. After an
action in Phase 1 the strategy is satisfied and doesn’t initialize other strategies. Now consider case
ρ2.1. of Phase 2 and assume that it happens infinitely often. This means that infinitely many cycles
are opened and that each cycle k has w−(�, k, 0) = 1 eventually. Let tk be the least stage such that
w−(�, k, 0)[tk] = 1 and cycle k + 1 is opened at this stage, then A(k) = Atk(k). Hence A is computable,
a contradiction. This proves (ii). Moreover, we proved that � has a greatest opened cycle, hence there
exists liminfsTPs(0) = liminfsTPs � 1 = TP � 1 and (iii) is proved.

For inductive step, we assume that (i)-(iii) hold for i ≤ n. Clearly, TP � (n + 1) exists and is visited
infinitely often since we have (iii) by induction. By (ii) we fix a stage s0 such TP � n doesn’t initialize
other nodes and is not initialized by other nodes after s0. Since TP � (n + 1) is on the True path the
nodes to the left of it will be visited only finitely many times. So, fix a stage s1 > s0 such that this
situation will not happen. From then on, TP � (n + 1) cannot be initialized in Phase 1 or Phase 2 by
other nodes. So, (i) holds for n + 1.

Further, we work at stages >s1 and proceed to the proof of (ii) and (iii). Consider the cases when
TP � (n + 1) correspond to R-, S- and P-strategies. If n + 1 = 3m, then we repeat the induction basis.

Assume that n + 1 = 3m + 1. An S-strategy σ can initialize other nodes only in Phase 1 or in case
σ2.1. of Phase 2. After an action in Phase 1 the S-strategy is satisfied and then doesn’t initialize other
strategies. Now we need consider only case σ2.1. of Phase 2. Assume that it happens infinitely often.
This means that infinitely many cycles are opened and that each cycle k has w−(σ, k, 0) = 1 eventually.
Hence A is computable (we fix a stage s2 > s1 such that Phase 1 is never happened, and to compute
A(k) we wait until cycle k + 1 is opened after the stage s2, then A(k) = Ask

(k)), a contradiction.
Assume that n + 1 = 3m + 2. An P-strategy π can initialize other nodes only in Phase 1 or in case

π1, π2, π3, and π5 of Phase 2. After an action in Phase 1 the P-strategy is satisfied and then doesn’t
initialize other strategies. Now we need consider only the cases with Phase 2. For contrary, assume that
one of the mentioned cases (π1, π2, π3, or π5) happens infinitely often. Clearly, if π1 happens infinitely
often then the same holds for π2 and π3. If π3 happens infinitely often then π5 happens either finitely
often or infinitely often.

• In the first (finite) case, there exist i such that for all k ∈ ω cycle (i, k) is opened. So, we can
effectively wait until cycle (i, k + 1) becomes opened at stage tk > s1. Hence A(k) = Atk(k) and A is
computable, a contradiction.

• In the second (infinite) case, there are infinitely many opened cycles (k, 0). So we can effectively
wait until cycle (k + 1, 0) becomes opened at stage tk > s1. Hence A(k) = Atk(k) and A is computable,
a contradiction.

This finishes the proof of (ii) for n + 1. Also we proved that TP � n has the greatest opened cycle,
hence there exists liminfsTPs � (n + 1). So, (iii) and the whole lemma are proved. �

Lemma 5.2. For any n ∈ ω the requirements Rn, Sn, Pn are satisfied.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

DOWNWARD DENSITY OF EXACT DEGREES 397

Proof. We prove that Rn is satisfied by ρ ∈ TP , where |ρ| = 3n. By Lemma 5.1 fix the least stage s0

such that ρ is not initialized after it. If ρ�d ∈ TP or ρ has finitely many expansionary stages then Rn is
satisfied vacuously. Otherwise, let k be the greatest opened cycle of ρ after the stage s0, so we prove that

L(D) = ΔL(Bn)
ρ,k .

Note that δρ,k is well-defined (see case ρ2.2 of the construction). For the functional, consider the
non-trivial case when x was an attacker of some π ⊃ ρ�(k,∞) and sD(x) is defined. Let s1 be a ρ-

expansionary stage when we defined L(D)(sD(x))[s1] = ΔL(Bn)
ρ,k (sD(x))[s1] = 0. There are two cases.

Case (1) There exists a ρ-expansionary stage s2 > s1 such that sD(x) ∈ L(D)[s2]. So, x got A-permitting
and later only numbers < x could get an A-permitting between s1 and s2. Consider the following
cases which can happen between these stages:

(1.1) There wasn’t a Phase 1. When we defined ΔL(Bn)
ρ,k (sD(x))[s1] = 0 we got δ

L(Bn)
ρ,k (sD(x)) = s1.

Also between stages sD(x) < s2 no other numbers < x got A-permitting (otherwise π (or some
S- or R- strategy below π which got this x) never extracts x from D). So, at stage s1 we have
some y ∈ Bn[s1] − Bn[s−1] such that y < ϕn(x)[s−1], where s−1 is the previous ρ-expansionary
stage. Moreover, D[s−1] � r = D[s2] � r, where r = ψn(y)[s−1]. Therefore Bn(y)[s2] = Bn(y)[s−1],
but this means that L(Bn) � s1 changed because of sBn(y) < s1. Hence L(D)(sD(x))[s2] =
ΔL(Bn)

ρ,k (sD(x))[s2] = 1 is the final value.

(1.2) Between ρ�(k,∞) and π it was Phase 1 with an enumeration, then it should enumerate some
xik < x and this xik was waiting for A(k)-change, however during this waiting it can only
circulate between cases π1, π2 and π3. Hence we always initialize all nodes below it, and in
particular π. So π cannot come even to its enumeration stage and this case is not valid.

(1.3) Between ρ�(k,∞) and π it was Phase 1 with an extraction, then it should extract some
x−

ξ,kj < x, moreover sD(x−
ξ,kj) < sD(x). Let ξ be the least node with such Phase 1. Hence

L(Bn)[s1] � sD(x−
ξ,kj) is changed (see 1.1) and we can redefine ΔL(Bn)

ρ,k (sD(x−
ξ,kj))[s2] and so

L(D)(sD(x))[s2] = ΔL(Bn)
ρ,k (sD(x))[s2] = 1.

Case (2) Such stage s2 > s1 doesn’t exist.

In both cases, L(D)(sD(x)) = L(D)(sD(x))[s] = ΔL(Bn)
ρ,k (sD(x))[s] = ΔL(Bn)

ρ,k (sD(x)), where s =
s2 or s1, respectively.

Now prove that Sn is satisfied by σ ∈ TP , where |σ| = 3n + 1. By Lemma 5.1 fix the least stage s0

such that σ is not initialized after s0. If σ�d ∈ TP or σ has finitely many expansionary stages then Sn is
satisfied vacuously. Otherwise, let k be the greatest opened cycle of σ after the stage s0, so we prove that

Wn = ΓL(D)
σ,k . Assume that ΓL(D)

σ,k (y)[s1] = Wn(y)[s1] = 0 was defined at σ-expansionary stage s1 > s0.
There are two possibilities now.

Case (1) There exists a σ-expansionary stage s2 > s1 such that y ∈ Wn[s2] − Wn[s1]. Consider the
following cases which can happen between these stages:

(1.1) There exists z < θn(y)[s1] such that z ∈ D[s1] − D[s2]. Since γσ,k(y)[s1] = s1 by case σ2.2 and
sD(z) < s1, we can redefine Γσ,k(y)[s2] = Wn(y)[s2] = 1 with γσ,k(y)[s2] = s2.

(1.2) Case (1.1) doesn’t hold and there exists z < θn(y)[s1] such that z ∈ D[s2] − D[s1]. However,
according to the construction case σ2.1 we must open cycle k + 1, a contradiction.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

398 LIU et al.

Case (2) Such stage s2 > s1 doesn’t exist. Here we need show that γσ,k(y) is well defined. Indeed, assume
the contrary. Then there exist infinitely many σ-expansionary stages s1 < ... < sm such that zm �∈
D[sm] and sD(zm) ↓< sm < γσ,k(y)[sm]. However, this means that between σ and the node,
which extracted some zm, there are infinitely many nodes which got permitting, a contradiction.

In both cases, Wn(y) = Wn(y)[s] = ΓL(D)
σ,k (y)[s] = ΓL(D)

σ,k (y), where s = s2 or s1, respectively.

Eventually, prove that Pn is satisfied by π ∈ TP , where |π| = 3n + 2. By 5.1 fix the least stage s0

such that π is not initialized after it and fix the greatest opened cycle (i, j) after s0 (henceforth, no cycle
> (i, j) is opened after s0). If π�d ∈ TP then it is satisfied vacuously. Otherwise, we assume that only
cycle (i, j) is working after some stage s1 > s0. This means that it gets stuck at π4, i.e. there is no a stage
s > s1 such that Ωn(sD(x+

ij))[s] = 0, hence it is a diagonalization by Ωn(sD(x+
ij)) �= 0 (if A changes at

some k ≤ i after s0 then we extract x−
km, where m is such that (k,m) is the greatest cycle in the series

k; hence Ωn(sD(x−
km)) ↓= 0 �= 1 = L(D)(sD(x−

km)) and π�d ∈ TP). This completes the proof of the
lemma and the theorem. �

ACKNOWLEDGMENTS

Liu is partially supported by NSFC grant (no. 61202131), the CAS Western Light Program and
CAS Youth Innovation Promotion Association (no. 2015315). Wu is partially supported by MOE2011-
T2-1-071 (ARC 17/11, M45110030) from Ministry of Education of Singapore, and by AcRF grants
RG29/14, M4011274. Yamaleev is supported by The President grant of Russian Federation (project
NSh-941.2014.1), by Russian Foundation for Basic Research (projects 14-01-31200, 15-01-08252),
by the subsidy allocated to Kazan Federal University for the project part of the state assignment in the
sphere of scientific activities, and by MOE2011-T2-1-071 (ARC 17/11, M45110030) from Ministry
of Education of Singapore. The work is performed according to the Russian Government Program of
Competitive Growth of Kazan Federal University.

REFERENCES
1. M. Arslanov, I. Kalimullin, and S. Lempp, J. Symbolic Logic 75 (2), 401–441 (2010).
2. G. Wu, J. Symbolic Logic 67, 1055–1064 (2002).
3. B. Cooper and A. Li, Science in China (Series A) 45, 1135–1146 (2002).
4. C. Fang, G. Wu, and M. Yamaleev, Arch. Math. Logic 52, 733–741 (2013).
5. Sh. Ishmukhametov, Arch. Math. Logic 38, 373–386 (1999).
6. R. Soare, in Recursively Enumerable Sets and Degrees (Springer-Verlag, Heidelberg, 1987), p. 437.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 36 No. 4 2015

		2015-11-27T12:26:41+0300
	Preflight Ticket Signature

